
Directory

DND 6

Table of Contents  List of Tables     Figures  

UNLIMITED DISTRIBUTION

National Defence
Research and
Development Branch

DREA CR/94/410
STATISTICAL DESCRIPTION OF THE

EAST COAST DIRECTIONAL
WAVE CLIMATE USING
10–PARAMETER SPECTRA

by
Barbara–Ann Juszko

JUSZKO SCIENTIFIC SERVICES
127 Cliff Drive, R.R.#4

Victoria, British Columbia, Canada
V9B 5T8

Scientific Authority W7707–3–2618
Ross Graham Contract Number
March 1994

CONTRACTOR REPORT

Prepared for

Defence
Research

Establishment
Atlantic

Canada



Directory

DND 6

Table of Contents  List of Tables     Figures  

ABSTRACT

Ten parameter model spectra were fit by MEDS to the three years
of archived ODGP directional wave spectra from 53 locations in the
Western North Atlantic. There were acceptable fits for over 93% of the
records. Empirical orthogonal function and factor analyses were used
to identify six regions, encompassing locations having a high degree
of covariability, to allow for an assessment of regional behaviour. A
statistical analysis was performed on annual, winter and fall data for
the individual, regionally grouped and all combined locations. This
consisted of a probability analysis on the model fit parameters, the
development of a family of directional spectra, having known
confidence levels, and the establishment of predictive relationships
between the fit parameters and significant wave height. A set of
probability directional wave spectra, chosen to represent a desired
spatial scale, can now be generated for any input significant wave
height as required by the given application.

RÉSUMÉ

Des spectres modèles à dix paramètres ont été ajustés par MEDS
aux spectres directionnels ODGP de vagues archivés. Les spectres
archivés comprenaient trois ans de données et venaient de 53
emplacements de la partie ouest de l’Atlantique Nord. Les ajustements
étaient acceptables pour plus de 93% des spectres. Des fonctions
orthogonales empiriques et des analyses factorielles ont été utilisées
pour identifier six régions couvrant des emplacements où la
covariabilité était élevée pour permettre une Evaluation des
emportements régionaux. Une analyse statistique des données annuelles,
hivernales et automnales a été effectuée pour chaque emplacement, pour
les emplacement regroupés en régions et pour l’ensemble des
emplacements. Elle consistait en une analyse de probabilités des
paramétres d’ajustement des modèles, en la mise au point d’une famille
de spectres directionnels de niveaux de confiance connus et en
l’établissement de relations de prévision entre les paramètres
d’ajustement et la hauteur significative des vagues. Un ensemble de
spectres directionnels probabilistes de vagues, choisis pour
représenter une échelle spatiale souhaitée, peut maintenant être
produit pour n’importe quelle hauteur significative des vagues donnée
comme Pexigeait l’application en question.
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1.0 INTRODUCTION

The results of Juszko, (1989 a,b) show that a 10–parameter model
spectrum, based on the Ochi and Hubble (1976) 6–parameter model, can
be used to represent both field and hindcast directional wave spectra.
With minimum sacrifice in data accuracy, this shorthand description of
complex spectra provides significant advantages for data storage and
integration of spectral information into complex numerical models.
Furthermore, by supplying a fixed set of descriptive parameters,
Juszko, (1991) demonstrated that statistical analyses can be performed
to categorize large volumes of data, to establish the probability
distribution of the spectral parameters and to provide the confidence
limits on representative spectra, necessary for risk and operability
assessment in ocean engineering.

In this study, three years of Offshore Data Gathering Program
(ODGP) hindcast directional wave spectra, from 53 archived locations
in the Western North Atlantic, will be analyzed in order to develop a
statistical description of the wave climate. The 10–parameter model
fits to the ODGP spectra will provide the fundamental data set for the
statistical analysis. Annual, winter and fall statistics from
individual, regionally grouped and all combined locations will be
examined. A family of directional spectra, having known confidence
levels, will be generated for each data subset for directed
application in ship operability assessment and structural design.
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2.0 STUDY BACKGROUND

2.1 Study Objectives

There were four primary objectives of this study. The first
objective was to apply the 10–parameter fit software, developed by
Juszko (1989b, 1991), to the archived ODGP hindcast wave spectra for
the period 1 Oct 1983 through 30 Sep 1986. This was performed by the
Marine Environmental Data Service (MEDS) after minor modifications to
the software in order to adjust to the VAX operating system. The
second objective was to conduct a regional analysis on the data set
ill order to determine if an objective grouping of sites was possible
based on the available environmental information. The numerical
techniques of empirical orthogonal function and factor analyses proved
successful in this task with resulting site clusters corresponding
well with accepted geographic areas. The third objective was to
provide a statistical description of the wave climate based on the
10–fit parameters, for various temporal and spatial data subsets. In
particular, a family of directional spectra, having known probability
of occurrence, was to be developed. The fourth objective was to assess
the contribution of the shape parameters to the observed variability
in the probability spectra.

2.2 Data Sources and Processing

Three years of ODGP directional wave spectra, generated every six
hours from 1 Oct 1983 through 30 Sep 1986, at 53 grid sites shown in

Fig 1  , have been archived at MEDS. As seen in Fig 2  , the time
series of spectral information were often discontinuous at northern
and nearshore stations with gaps associated with winter, ice–covered
periods. Using software developed in Juszko (1991), a total of 220,151
spectra from the 53 sites were fit by the 10–parameter model:
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 (1)

Here ��������� is the directional spectrum, is the modal frequency, δ is
the variance parameter, λ is the shape parameter, A(pi) is a
normalization factor for the area under a cos2p curve, p is the
directional spread and θ m is the modal direction. A(p) is expressed
as:
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The accuracy of the 10–parameter fit was evaluated using the residual
error statistic:
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where D represents the ODGP input spectrum, WT is a weighting based on
the ODGP spectral bandwidths and the sum is performed over N
frequencies and M directions. The input ODGP spectra consisted of N=15
frequencies with nominal values of 0.2545, 0.2792, 0.3142, 0.3491,
0.3840, 0.4189, 0.4538, 0.5062, 0.5760, 0.6458, 0.7331, 0.83777,
0.9948, 1.309 and 1.9373 rps and M=24 directions with a 15 degree
resolution. An advantage of the 10–parameter model is that it can be
regenerated at any desired frequency – direction combination.

In order to represent both the more energetic wave periods and to
account for the winter data gaps at many locations, the data set has
been divided into three temporal periods: annual (all records), winter
(January, February, March) and fall (October, November, December).
From earlier work, a fit acceptance criteria of RESD�20%  was
established and the total percent of accepted records per site is

shown in Fig 3  . It can be seen in Fig 3   that over 90% of the fit
results, at most locations, are accepted justifying the general use of
the 10–parameter model as well as verifying programming accuracy. The
poorest return was for sites off the east coast of Newfoundland
possibly reflecting the reduced number of energetic winter records and
single–peaked spectra which are well represented by the 10–parameter

model. It will be seen in the regional analysis of Section 2.3   and

3  , that this area could be considered as a separate region based on
various other criteria.

The basic data set available for the statistical analyses
included the model wind speed and direction, significant wave height,
a spectral type code determined for the ODGP spectra, the 10–fit
parameters and the RESD error statistic. The spectral type code
consisted of a two–digit value where the first digit represents the
number of scanned peaks and the second corresponds to one of the
following values based on the direction and period separation between
the two largest peaks:

0 – single peaks
1 – if dθ � 45 degrees; dP � 2 seconds
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2 – if dθ � 45 degrees; dP � 2 seconds
3 – if dθ 	� 45 degrees; dP � 2 seconds
4 – if dθ � 45 degrees; dP � 2 seconds

For example, a code of 10 represents a single peaked directional
spectrum (at any frequency or direction), a code of 21 indicates a
bimodal spectrum whose two peaks are separated in both period and
direction, a code of 32 reflects a spectrum having three peaks where
the two largest peaks are separated in direction but close in period,
etc. The spectral type code provides a further data grouping criteria,

if desired. Fig 4   contains maps of the percent occurrence of
spectral type at each grid point. It is important to note that
multiple peak spectra made up over 50% of the records at 48 of the 53
sites justifying the use of a parametric model which allows for at
least two directional peaks.
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2.3 Regional Analysis

The 53 grid point locations supply good geographic coverage of
the Western North Atlantic. However, they also provide an unwieldy
amount of information to assimilate on a location by location basis
and could lead to the loss of important regional signals when the
volume of data forces the averaging of locations together. This
problem has been recognized in other studies as ’representative’ grid
points for the Grand Banks, Scotian Shelf, etc. have been established.
In our application we wish to develop a representative family of
probability spectra for a region by averaging over sites which have a
high–level of covariability.

The demarcation of regions is often based on an assessment of
geographic features such as water depth and fetch limiting land
masses, subjective selection upon examination of mapped measured
physical signals, etc. One approach is the examination of the maps of

spectral type in Fig 4   and of maximum significant wave height (HSIG)

in Fig 5  . For example, the locations where single peak spectra make

up less than 40% of the records (Fig 4a  ) while multi peaked spectra,
with peaks separated in both period and direction, make up over 25%

(Fig 4b  ) corresponds to a region off the east coast of Newfoundland.
Offshore vs inshore regions can be differentiated by the occurrence of
multi peaked spectra, with peaks separated in direction but close in

period, (Fig 4c  ) being less than or greater than 22% of the records.
A separation between the Scotian Shelf – Western Grand Banks and
Eastern Grand Banks can be made based on the number of occurrences of

single peaked spectra (Fig 4a  ) being less than or greater than 45%

and by the observations of maximum HSIG (Fig 5  ) greater than 10.5m
on the Eastern Grand Banks. This approach however is limited as the
range in the mapped information is small and possibly sensitive to
slight changes in the data sets, the selection process is subjective
based on pre–conceived expectations of the variability (e.g. with no

preconceptions, when examining Fig 4a  , one may decide to group all
sites with occurrences >50% which would result in an averaging of
selected southern sites with the physically independent northern
ones), and all temporal information has been lost so that an
understanding of the covariability cannot be made.

An objective numerical method, which utilizes the covariance
information inherent in the spatially distributed time series and
whose results can be critically assessed, is desired. A method based
on an initial eigenvector analysis of either the spatial covariance
(empirical orthogonal function technique) or correlation matrix
(principal component technique) is specifically designed to reduce
large volumes of spatial data into a manageable format. It results in
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the partitioning of the total spatial variance structure into sets of
mutually independent behavioral Modes. The eigenvectors can then be
rotated through a statistical technique known as a factor analysis to
determine regional grouping.
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The procedure consists of four steps. First, the eigenvectors and
eigenvalues are determined for the M x M covariance matrix obtained
from the M x N matrix of M locations at which N simultaneous samples
are made. Second, various test are applied to assess which  P( P < M )
eigenvectors are significant and the data set reduced from the
original M site locations to P ”eigen locations”. The remaining (M –
P) vectors cannot be differentiated from random noise. Third, a
principal component analysis is performed which consists of a further
normalization of the covariance matrix by the sample standard
deviation and of the eigenvectors by their respective eigenvalues. And
fourth, a factor analysis, using the VARIMIAX approach, is conducted
on the P principal components which allows for regional grouping of
covarying stations.

Step 1. Theory of eigenvalues and eigenvectors

Consider a grid of points at M locations not necessarily equally
spaced, but sampled simultaneously in time over N samples. The sampled
quantity (e.g. Significant wave height) will be denoted by ��
����� �� �,

M;j=1, N. At each grid point we calculate the mean in time ie:

��
� �
�


�
��


���

�
���

and form the shifted set of time series with zero mean viz:

������� � �
������ � �
�

We now wish to find a rotation of the data:

�
�
� � �

���

���

�������
�
� (4)

where k is the eigenvector index (k=1,M), under two conditions:
a. that the variance:

�� � �


�
��


���

��
�
� �

� � �


�
��


���

����
���

���

� �������
�
� ��

�

be a maximum and

b. that the rotation vector normalizes to 1.0:

�
���

���

������ ��
� � �
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The procedure used is Lagrange’s method of undetermined multipliers:

�� � �


�
��


���

����
���

���

� �������
�
� ��

�� ������� �
���

���

��� �
�
� �� (5)

where �� is an undetermined multiplier. Minimizing eq 5 with respect

to �� leads directly to the linear set of equations:

�
���

���

��� �


�
��


���

������������
�
� � �

���

���

������
�
� � ����

�

(6)

where ������ is the cross–covariance matrix.

Equation 6 is the eigenvector equation where �� is referred to as

the eigenvalue and the ��
�

 is the rotation which maximizes the variance

of the output series �
�
� . In general, there will be M eigenvalues and

eigenvectors denoted by �� � �� ���� � �� and ��
�

�����
�

��� ���� ����
�

 . Since the
cross–covariance matrix is symmetric (Hermitian in the case of complex
quantities), it can be shown that the eigenvalues are real (and
positive definite since the off diagonal elements are < diagonal
elements) and the eigenvectors are orthonormal, i.e.:

��
�

�����
�

� ����

where ���� � �� � ��� �� �� �. Furthermore, the time series ���
�
� �� associated

with each eigenvector has a variance ����� � �� and the sum of the

eigenvalues � ��  equals the total variance of the input station time

series. Eigenvectors are the most efficient means of representing the
variance of the data grid. From a reduced eigenvector set where noise

and signal have been separated, the time series ��
�
� � based on

transformation of eq 4 will contain approximately the same amount of
information (i.e. the signal) as the original data. Normally, the
eigenvector problem is solved in terms of the complete solution and
written in matrix form:

�	� 	


where � is the cross–covariance matrix as before, � is the

eigenvector matrix whose columns are the constituent eigenvectors ��
�
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and � is a diagonal matrix whose elements are the constituent

eigenvalues � �� .

Step 2. Determining the number of significant eigenvectors

There are various selection rules, based on either variance or
temporal criteria, that can be used to determine the number of
significant (i.e. above, noise) Vigenvectors so that a reduced data
set can be established. A good discussion on these can be found in
Preisendorfer (1988). In our application, three simple criteria will
be examined. The first involves the drawing of a ”Scree” plot of the
eigenvalues. in descending order, vs the i–index. There usually exists
a distinct change. in the slope of the plot demarcating the break
between signal and noise. The selection of the break in the slope is
somewhat subjective, However, and a more objective. method is useful.
The Guttman Lower Bound criteria states that for a given eigenvector
to be significant, it must explain more variance than that which is
contained in the average input time series from all locations. A third
procedure, Selection Rule ”N”, involves a statistically rigorous
approach utilizing a series of Monte Carlo simulations with random
numbers in order to determine the inherent noise levels of the
analysis. If there is zero self–correlation in the input sample data
set of N values, N realizations are performed. However, in our
application self–correlation is expected and one must use an

equivalent number of samples, 

�

�
. 


�

�
, for large N, is approximated by



�

�
�


��� ���

��� ���
(7)

where

��
� ����������� ��

� ������ ��
 (8)

and z(t) is the input time series after removal of the mean. 

�

�
 is

calculated for each location and generally the minimum value is used
in the simulation. Using the asymptotic theory of eigenvalues of large
matrices (see Preisendorfer, 1988), one can determine a value

�


�

�

�
(9)

and look–up tables have been established (e.g. Table 5.1 in
Preisendorfer (1988)) for β from which one obtains the equivalent
eigenvalue at index i which would arise from an analysis on random
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noise. If the data eigenvalue is larger than the corresponding noise
eigenvalue, than the associated eigenvector is significant at the 95%
confidence level. The results of these tests will be discussed in

Section 3  .

Step 3. Principal Components

Another approach to the eigenvector problem is that of principal
components which differs from the eigenvector analysis described in
Step 1 in two major respects. First, the input time series is further
normalized by the standard deviation ie.:

������� � ����
� ������ ��
������ (10)

Consequently, the eigenvalues and eigenvectors of the
cross–correlation matrix are calculated. The total variance of the
grid, and hence the sum of the eigenvalues, is now equal to the total
number of grid points. Second, the eigenvectors are normalized to the
eigenvalues:

�
���

���

���
�
��

�
� �� ���� ����� (11)

This procedure offers a number of advantages in the analysis of
reduced data sets. Consider a set of M grid data points, reduced to P
eigenvector time series based on the principal component approach. The
quantity:

��� ��
���

���

���
�
���

�
� (12)

is called the communality of the rotation and is the percent of
variance at each grid point accounted for by the transformation. Thus
if a particular grid point is totally different from the rest of the
data, it will have a small ( <0.5 ) communality. The amount of
variance explained at each location will remain constant through the
factor analysis.

Step 4. Factor Analysis

Several problems can arise with eigenvector/principal component
analysis. First, if there are a large number of stations closely
grouped together, accounting for a large portion of the total
variance, the eigenvector reduction may reflect the covariability of
the proximity of this grouping rather than underlying structure.
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Second, virtually all eigenvector analyses exhibit a structure based
on geometry rather than physical processes. For example, mode 1 of
many analyses will have elements all of the same sign suggesting
mutual covariability of the data. The second mode will show two
distinct groups with antivariability. Furthermore, the eigenvector
elements (or loadings) will be fairly small, with any one element
accounting for only a small fraction of its associated grid point
variance. The approach in factor analysis is to further rotate the
eigenvector matrix so that the principal component (PC) loadings
reflect simple structure (initially defined by Thurstone in 1947, see
Richman, 1986 for a good review). This is the situation when the
eigenvector elements make only large ( �25% and preferably � 50% )
or negligible ( � 5% ) contribution to grid point variance. The
required rotation is of the form:

�� 	 (13)

where F is the rotated eigenvector matrix, now called the factor

matrix with column elements �
�
 which represent the underlying

structure, 	  is the eigenvector matrix of PC loadings and T is a,
yet to be determined, rotation. The rotation may be either orthogonal
or oblique, depending on whether or not the columns are orthonormal. A
widely used orthogonal rotation is the VARIMAX rotation. The squares
of the columns of the factor loadings are treated as data and we
consider the rotation which minimizes the quantity:

�� �
�
�
���

���

��� �
�
�
���

���

���
����

�

���
���� � �

�
�
���

���

����
�

���
����� (14)

The rationale is to rotate the PC loadings so that large values are
emphasized and grouped into similar classes. This is essentially a
minimization of the fourth moment of the distribution of the PC
loadings. The factor matrix now consists of P columns each
representing one factor (or region in our application) whose row
elements are the loadings associated with the corresponding Al
stations. The columns of the factor matrix F are examined and
groupings are determined by file following criteria:

a. The columns are searched and factor loadings > 0.5 are
identified.
b. If two columns contain loadings > 0.5, the column with the larger
loading is accepted as the required factor.

Stations whose maximum loadings share the same factor form part of the
Same region. The results of this analysis will be discussed in Section

3  .
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2.4 Statistical Analysis

The statistical analysis was applied to annual, winter and fall
data for the individual grid point data sets, regionally grouped data
and the combined locations. A grouping by spectral type was also
performed on the combined data set. Records whose fit residual error
was greater than 20% were excluded. The analysis consists of three
steps: 1. a determination of the underlying fit parameter probability
distributions; 2. the development of a family of spectra with known
confidence limits; and 3. the establishment of predictive
relationships between the averaged, statistical fit parameters and
significant waveheight.

Step 1. Probability distribution analysis.

Juszko (1991), in a similar analysis on data from a single
location, showed that the 10–fit parameters are best treated as a

reduced set of eight parameters given as ���������������������������� ln(λ 1),
ln(λ 2), ln(p1), ln(p2) and (θ m1 – θ m2). For each input data set, the
probability occurrence histogram of the derived parameters plus wind
speed, for each of 11 significant wave height classes (i.e. 0–1m,
1–2,2–3, ..., 9–10, >10m), was established. Outlier points and default
values (set by the fit software to limit parameter values to
physically acceptable ones, e.g. ω m cannot be greater than the
maximum spectral frequency, or as a result of computer overflow
limits, e.g. p < 60 ), as well as occurrences of zero wind speed, were
removed. In general, these problems were most severe for the 0–1m
height class. Bounds were set on the distribution. After testing
various probability functions (e.g. Rayleigh, Beta, Gamma), the
two–sided bounded Gaussian distribution was found to be the most
versatile. A non–linear least squares fit was applied to the
probability occurrence histograms and the location of the upper and
lower 95% confidence limits, modal (position of maximum occurrence)
and median (50% probability level) values were, established.

Step 2. Development of the family of spectra.

The family of spectra of a given data set are obtained by
sequentially selecting each parameter examined in step 1 to be a
”target” parameter, determining a catchment range about the target
mode, median and 95% limits, and scanning all accepted wave records
for occurrences when the equivalent parameter value falls within the
catchment range. Once all records have been examined, the non–target
parameter values are averaged. The catchment limits were established
by selecting a fixed probability range about the .025 and .975 (95%
limits), and the modal probability value (this equals 0.5 for the



Directory

DND 6

Table of Contents  List of Tables     Figures  

median value but can vary for the mode for ill–behaved distributions
and is found by scanning for the maximum functional value). The range
used was initially set to a.025 probability adjustment, however, as
there may be zero occurrences of target values failing within the
specified catchment area, the probability adjustment is sequentially
increased to .05, .075, ... until at least one occurrence is
encountered. For each data set, the analysis produces a family of N x
9 spectra for each height class, where N (usually N=3) is the, number
of probability levels examined. The individual target parameter modal
(or median) spectra are averaged together to provide one overall modal
(or median) spectrum.

Step 3. Predictive relationships.

Once the families of spectra are established, the results can be
generalized by determining the predictive relationship between
respective fit parameters (y) and significant wave height (x). The
functional form

y=axb+cx+d (15)

was found to be the most versatile in Handling the various x–y
relationships observed.
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3.0 REGIONAL ANALYSIS

The numerical techniques of empirical orthogonal function (EOF),
principal component (PC) and factor analysis (FA), described in

section 2.3  , were applied to the data in order to understand the
underlying behavioral modes of the wave climate and to determine the
physical grouping of the stations.

3.1 Considerations

The first step in the analysis is the selection of the
appropriate physical parameters to be mapped. As much of the later
statistical analysis is based on the separation of information into
significant wave height classes, significant wave height (HSIG) is a
logical choice. The significant wave height has the advantage of being
a well–established wave parameter, whose behaviour is less erratic
than, for example, individual spectral model fit parameters, and will
exhibit regional variability due to physical environmental factors
such as the average wind fetch, water depth, etc. A major
justification for the use of the 10–parameter model is the requirement
for modelling directional wave energy. Therefore, it would be
appropriate to also choose a physical parameter which could represent
the regional behaviour of directional wave energy. The directional
forcing vectors are readily established from the time series of wind
speed and direction. Juszko and Graham (1992) showed that a wave
”directional energy” vector could be obtained in a similar fashion
using HSIG (in the place of wind speed) and vector mean direction
(VMD) which can also be calculated over selected frequency ranges. An
EOF or PC analysis using these vector time series would not only
provide regional groupings similar to those found with HSIG, but the
eigenvector components would also indicate the direction associated
with the wave variance. In order to obtain the wave vector time
series, the 10–parameter model spectra were regenerated and HSIG and
VMD values calculated over four frequency ranges: 1) all frequencies;
2) < 0.5 rps, low frequency or swell 3) 0.5–0.85 rps, mid–frequency;
and 4) 0.85–2.0 rps, high–frequency.

The EOF analysis is best performed oil continuous data which
posed a slight problem with the existing data set due to the numerous
winter data gaps. Small data gaps were rare but these occurrences were
handled through interpolation. Consequently two separate analyses were
performed, the first on all 53 locations after the largest data gap
period was excised from all data sets, essentially resulting in the
removal of a large portion of the winter information, and the second
on a reduced data set of 34 locations of annual continuous data. As

mentioned in Section 2.3  , the EOF analysis may be influenced by the
geographic spacing of the measurement sites. Although the later FA
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results should be less sensitive to this problem, it was verified by
decimating the 53 and 34 grid point data sets to 32 and 21,
respectively, through removal of some of the Scotian Shelf and Grand

Banks sites. The, resulting maps are shown in Fig. 6  .

3.2 EOF Analysis Results

The EOF analysis was performed on the covariance matrices
obtained from the time–centered series of HSIG (real valued analysis)
and five energy vectors (Complex analysis) measured at the selected
grid points of the four data sets (i.e. M=34, 53, 21 and 32). The five
energy vectors were the wind vector and the wave directional energy
vectors calculated over the four frequency ranges described in the
previous section. In our application, time–centering was performed by
removing the monthly mean in order to account for a possible annual
signal. The number of significant eigenvectors (i.e. signal vs noise)

was determined according to the rules described ill Section 2.3  . Fig

7a   and b   contain the ”Scree” plots for the HSIG and vector
analyses based on M=34. The choice of P significant eigenvectors
associated with the break in the slope is difficult. The Guttman Lower
Bound criteria results are shown as the arrows in both figures. In
order to apply Selection Rule ”N”, the equivalent number of

independent samples (

�

�
) must first be established using eq. 7 and 8.

In our analysis, we had an input time series of 4382 samples (for

continuous annual data). After applying eq. 7 and 8, 

�

�
  ranged from

289 to 445 points depending on measurement site. As



�

�
���
 �
��� ���� � ������ (16)

this implies a self–correlation time scale of ���
= 2.5 to 3.8 days
(i.e. the time necessary between two samples for them to be
uncorrelated) which reflects the 2 to 4 day weather time scale. A
value for β (eq. 9) can now be calculated ( β = 8.5 and 13.1) and the
equivalent noise eigenvalues obtained from look–up tables. The

equivalent noise eigenvalues are plotted on Fig. 7a   as the upper and
lower dashed lines. According to Rule ”N”, any eigenvalues lying above
the dashed lines are significantly different from noise. By performing
these tests, it was found that for M=53, 34 and 32, the first six
eigenvectors were significant and for M=21, only the first four were
significant. This implies that using only six (or four) eigenvectors,
one can regenerate the input signal time series, at a given
measurement site, and explain
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���	
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�

���

��

�
�

���

��

(17)

percent of the total variance at that site. This quantity will vary
from location to location depending on its covariability (noise levels
are assumed relatively constant at all locations as indicated by the
little separation in the dashed lines on Fig. 7a for the range in



�

�
). The amount of variance explained at each site are shown in Fig.

8 a   to c   (M=34) for the HSIG, wind and total wave energy vectors,
respectively. An example of a regenerated time series is shown in Fig.

9a   (input) and b  (regenerated) for the wind and total wave energy
vector (cosine and sine) time series from grid point 259. It can be
seen that the major features and sign convention have been retained
through the transformation (eq. 4 using P eigenvectors) acting as a
check on both the analysis and programming.
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Mapping of the eigenvector constituents provides information on
the distribution of the variance into modes of behaviour. The first

four modes for HSIG M=34 analysis are shown in Fig 10   while those

for total wind and wave energy vectors are provided in Appendix 1  

Figs A1   and A2  , respectively. The eigenvectors are normalized so
that the sum of the constituents equals the corresponding eigenvalue.
The M=34 data results are chosen for illustration as the annual,
continuous time series is the best form of the data to use in an EOF
analysis. In these figures, the percentage of the total variance
explained by that mode is listed in the lower right corner, and in the

case of Figs Al   and A2  , the eigenvector constituent consists of an
amplitude and direction which are mapped as vectors, pointing toward
the direction of variance propagation, and which have been normalized
by the largest magnitude eigenvector constituent, also drawn in the
lower right of the map. The relative magnitude of the eigenvector
constituent or length of the constituent vector, provides a
qualitative understanding of how well the sites group together.

Opposite signs in Fig 10   indicate anti–variability and it can be
seen that the modes reflect expected EOF analysis behaviour (i.e.
first mode – moving together; second mode – two regions of

anti–variability; etc.). The nodal lines in Fig 10   and the gyre–like

features in Figs Al   and A2   appear to be geographically linked. In
the case of the reduced data sets (M=21 or 32), the nodal lines and
maximum coefficient values on the Scotian Shelf and Grand Banks were
shifted slightly offshore, most noticeably for mode 2, reflecting the
reduced weighting in this region. The vector analysis results show
different first mode behaviour between wind and waves and similar
behaviour at higher modes. The advantage of the EOF analysis lies in
the separation of the variance into mutually independent modes which
can then be examined dynamically. The eigenvector amplitude time
series can be treated as any other time series and the correlation
between the forcing and response signal modes, time scales,
coherences, etc. can be calculated. For example, the correlation

between the wind and wave vector results are shown in Table 1  . As
expected, the high–frequency wave vectors are best correlated with the
winds with little phase shift. The disadvantage of the EOF analysis is
that the information needed to clearly differentiate covarying regions
is hidden in the modal structure and can only be extracted through the
use of factor analysis.
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Table 1. Correlation coefficients and phases (clockwise) between wind
and wave eigenvector modes

MODE # 1 2 3 4
CC DEG. CC DEG. CC DEG. CC DEG

TOTAL .78 278 .53 347 .52 10.8 .62 349
LOW .38 210 .11 359 .23 352 .13 334
MID .71 250 .41 364 .41 12.7 .51 346
HIGH .86 325 .78 356 .75 351 .78 354

3.3 Factor Analysis Results

As described in Section 2.3  , FA uses the results from a
principal component analysis applied to the P significant eigenvectors
found in the previous section. The output consists of a table of
factor loadings whose columns are searched for absolute values greater
than 0.5 (i.e. indicating a communality of at least 25%). Sites, whose
maximum loadings share the same factor, are grouped together as

regions. For example, Table 2a   and b   lists the factor loadings for
the HSIG analysis when M=34 and 53, respectively. These are mapped in

Fig. 11 a   and b  . Similar results are shown for the wind and total

wave energy vectors in Tables 3 a  ,b   and 4 a  ,b   and Figs. 12  

and 13  , respectively. In this case, the loadings are forced positive
(i.e. one examines the magnitude of the complex vector). The M=21 and
M=32 analyses, as well as the three wave vector component analyses,
did not provide any significant additional information. The boundaries
of the regions may shift slightly for the different data sets as
marginal sites often share a high level of communality with more than
one region and dominance is determined by the selected averaging. Grid
points 262 and 328 were the two stations most likely treated as
individual factors (i.e. low communality with the remaining 52
stations). There appears to be six regional groupings of the stations:

1. Labrador Shelf – GP 655, 613, 571, 573, 530, 532, and 510
2. Eastern Offshore Open Ocean – GP 558, 493, 476, 412 and 394
3. Northern Coast of Nfld. – GP 490, 1312, 470, 1270, 1272, 428,
429, 1188, 1190, 1146, and 387
4. Eastern Grand Banks and Flemish Cap – GP 389, 1104, 1106, 345,
347, 325, 328, 304, 262, and 265
5. Western Grand Banks – GP 1120, 3631 364, 1077, 1079, 1081, 344,
10351, 1037, 1038, 1039, 321, and 302
6. Scotian Shelf – GP 1032, 1010, 298, 299, 300, 277, and 259.
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It is rewarding to note that the regions obtained with factor analysis
correspond to geographic areas which might be chosen intuitively.
However, we now have a strong statistical justification for their
selection and know how much variance is being accounted for if the
station is included in a regional averaging.
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4.0 MODEL STATISTICAL ANALYSIS

The statistical analysis, as described in Section 2.4  , consists
of: 1) the performance of a probability analysis on the occurrence
histograms of a set of eight derived model fit parameters plus wind
speed for each of 11 significant waveheight classes; 2) the
development of a family of probability spectra; and 3) establishing
the regression relations between the fit parameters of the probability
spectra and HSIG. The analysis was performed on data subsets based on
temporal periods (annual, winter and fall) and spatial groupings

(individual grid points, the six regions found in Section 3   and all
locations combined). A grouping according to spectral type was also
examined for the combined data set. Because of the volume of data and
results, only selected examples will be discussed. All the results can
be made available on computer storage medium.

4.1 Probability Analysis

A two–sided bounded Gaussian distribution was fit, by means of a
non–linear iterative procedure, to the probability occurrence

histograms of the eight derived fit parameters ����������������������������
ln(λ 1), ln(λ 2), ln(p1), ln(p2) and (θ m1 – θ m2), plus wind speed. This
resulted in a set of nine probability functions per wave height class
per temporal–spatial data subset. A minimum of 20 data values was
required to perform the fit. An example of the probability fits for
three wave height classes of the combined annual analysis, is shown in

Fig. 14  . The fits for the other height classes are provided in Fig

A3   of the Appendix. The occurrence histograms are generally well
represented by the bounded Gaussian. All data set probability fits
were examined visually and the behaviour was consistent. The 0–1m and
1–2m wave height classes showed the most variability with some
occurrences of bimodal distributions. At larger waveheights, the
smaller sample sizes could result in an non–standard, ”gap–tooth,”
and, at times, flat distribution. The bounded Gaussian could still be
fit mathematically to these cases however the interpretation of the
probability limits, choice of mode, etc. becomes questionable.

The probability functions allow for the determination of any
confidence limit parameter value, the mode of the distribution (i.e.
peak location of the probability curve) and the median (i.e. 50%
probability value). For well–behaved distributions, the mode and
median would have similar values. The bounded Gaussian allows for
truncated distributions, in which case this is no longer true. In our
application, the 95% confidence limits (i.e. probability values of
.025 and .975) of the parameter distribution was used in the
generation of the family of spectra.
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4.2 Family of Spectra

The family of spectra, for each temporal–spatial data subset, was

developed according to the method described in Section 2.4  . Fig.

15   shows the averaged modal spectra, per height class, per region
for the annual data sets. The spectrum associated with the spatially
combined data set is provided in the lower right corner. Contour
intervals for all directional spectra were set to .01, .025, .05, 0.1,
0.25, 0.5, 1., 2., 4., 6., 8., 10., 15., 20. and 30. m2/(rps – rad).
The spectra are positioned on the map to correspond to the six
established regions. There appears to be very little regional
variability in the average modal spectra except at the lowest
significant wave heights where the presence or absence of swell may

most influence the fit. Fig A4   in the Appendix contains the lower

and upper 95% confidence limit spectra when  ��� is the target
parameter. The target parameter, wave height bin and confident(, level
are noted in the upper right of the maps. The regional variation is
again slight. At higher significant wave heights, differences may
reflect a reduced number of averagings in the establishment of the
family of spectra (i.e. a small sample size for high energy records)
which, due to the nonlinear nature of the 10–parameter model, could
lead to unexpected spectral shapes. The absence of large regional
differences, when examining data grouped into HSIG classes, is not
surprising. Sea spectra are self–similar so that a spectrum associated
with a significant wave height of, for example, 6m will look the same
wherever it is measured (due to the strong relationships between
height, peak period and self–similar spectral shape). As we, are
working with model wave spectra, there may be some concern that the
spectral shape is a product of the ODGP numerics, however
self–similarity in field spectra has been well established. The
regional variation will be reflected in the temporal information, lost
in the statistical averaging, and in the number of occurrences of, for
example, 6m spectra at one location compared to another. The latter

can be. seen in Fig 16 (a   to c  ) which maps the percent occurrence
of HSIG by region and overall.

4.3 Predictive Relations

In order to generalize the family of spectra to any significant
waveheight, the predictive relationships between the statistically
determined fit parameter (y) and mean height per wave height class (x)
was established using eq. 15 and a non–linear fit procedure. The
results for the annual combined data set averaged modal spectra are

shown in Fig. 17  . Similar results for the 95% confidence limits are

shown in Fig. 18  . It can be seen that the functional fit has various
degrees of success, best when the chosen parameter is the target
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parameter and poorest for the shape, and spread fit parameters due to
their intrinsically noisy nature. In the case of (θ m1 – θ m2), the mode
is generally close to zero and the regression could lead to small
negative values at low heights ( <5 degrees) as it attempts to fit
the, small variability of the parameter with HSIG (i.e. the range in
(θ m1 – θ m2) is less than the direction resolution of the ODGP spectrum
of 15 degrees). Caution would be required when applying the prediction
to HSIG values lying beyond the range in the observations.
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In order to examine the regional variability, the target
parameter regressions, for the six regions, and at the three

probability levels are shown in Fig 19  . In general, the regional
regressions show similar behaviour with the greatest variability seen
in the shape and spread parameters. An examination of the catchment
range about the target parameters indicated that the separation
between regressions may be significant for the majority of the modal
fits as well as for selected confidence. fits (e.g. the catchment
range for the lower 95% confidence fit of wind speed do not overlap
for regions 1 and 2). The relative importance of the slight
differences will depend on the sensitivity of the given application.

4.4 Role of the Shape Parameter

The predictability of the shape parameter from other fit
parameters, with particular focus on the modal frequency, was examined
in order to determine the possibility of reducing the number of
adjustable parameters in ship motion modelling. Scatterplots of 1n(λ)
vs ω m were found to show high levels of noise with λ  being
approximately constant for frequencies above 0.65 rps while the
scatter below this frequency, possibly reflecting fit behaviour as
opposed to any physical relationship, was too large to draw any

conclusions. This is supported by examination of Fig. 18   when the
two shape parameters are the targets. It can be seen that, despite the
wide separation in 1n(λ) for the 95% confidence limits at a particular
HSIG level, there is almost no variation in the corresponding averaged
ω m value. The ω m  averages, however, do vary with other target
parameters. λ  values are sensitive to the energy ”split” between the
two components of the model (observe, the response of the �����������������
parameter). There is a slight increase of λ1 with HSIG possibly
reflecting sea peak steepening coinciding with growth while  λ2
remains relatively constant for HSIG 3.0m. A proper assessment of the
role of the shape parameters would require re–fitting of the
10–parameter model to the input ODGP spectra, using software which
incorporates the different functional relationships for λ, and
examining the associated residual errors.
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5.0 SUMMARY

In this study, 220151 ODGP hindcast directional spectra, from 53
locations, were fit by a 10–parameter directional wave model. It was
found that the fit for over 93% of the records (204875 spectra) was
acceptable based on residual error estimates. It was also noted that,
for the combined data set, 55.2% of all spectra (52.4% of acceptable
fits) were judged to have more than one directional spectral peak.
Hence the use of a model which can adequately represent at least two
directional peaks was proven to be necessary for proper statistics and
the chosen 10–parameter model was validated.

The numerical techniques of empirical orthogonal function,
principal component and factor analysis were shown to be useful in the
determination of a regional separation or clustering of the
measurement sites, based on wave and wind features. The analyses
distinguished six regions which corresponded well with known
geographic divisions. These were: 1) Labrador Shelf; 2) Eastern
Offshore Open ocean; 3) Northern Coast of Newfoundland; 4) Eastern
Grand Banks and Flemish Cap; 5) Western Grand Banks; and 6) Scotian
Shelf.

The probability and statistical analyses were performed in order
to obtain a family of spectra, having known confidence limits, which
could represent the range of directional spectral energy distributions
observed. The averaging was performed both temporally (annual, winter
and fall) and spatially (individual sites, six regions and overall).
The predictive relations between the statistical fit parameters and
significant wave height were established. A set of probability
spectra, chosen to represent a specific temporal and spatial scale,
can now be generated for any input significant waveheight as required
by the given application.
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APPENDIX 1. ADDITIONAL FIGURES
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